Generalized nonlinear Fokker-Planck equations

PN-III-P4-PCE-2021-0006

2023

Articole publicate:

1. Viorel Barbu, The Trotter product formula for nonlinear Fokker–Planck flows, Journal of Differential Equations, 345 (2023), 314-333. ISI. FI=2.43; SRI=2.19, zona Q1.

2. Viorel Barbu, Exact controllability of Fokker–Planck equations and McKean-Vlasov SDEs, SIAM J. Control Optim., vol. 61, no. 3 (2023), 1805-1818. ISI. FI=2.163; SRI=2.19, zona Q1.

3. Viorel Barbu, Existence of optimal control for nonlinear Fokker–Planck equations in L1(Rd), SIAM J. Control Optim., vol. 61, no. 3 (2023), 1213-1230. ISI. FI=2.163; SRI=2.19, zona Q1.

4. Viorel Barbu, Michael Röckner, Uniqueness for nonlinear Fokker–Planck equations and for McKean–Vlasov SDEs: The degenerate case, Journal of Functional Analysis, 285 (2023), 109980. 37 pp. https://doi.org/10.1016 /j.jfa.2023.109980. ISI. FI=1.7; SRI=2.9, zona Q1.

5. Viorel Barbu, Michael Röckner, Nonlinear Fokker–Planck equations with time-dependent coefficients, SIAM J. Math. Anal., 35 (1) (2023), 1-18. ISI. FI=1.00; SRI=2.335, zona Q1.

6. Alberto d'Onofrio, Mimmo Iannelli, Piero Manfredi, Gabriela Marinoschi, Optimal epidemic control by social distancing and vaccination of an infection structured by time since infection: The COVID-19 case study, SIAM J. Appl. Math., S199-S224. https://doi.org/ 10.1137/22M14994. ISI. SRI=1.418, FI=0.950, zona Q1.

7. Gabriela Marinoschi, The H∞-control problem for parabolic systems with singular Hardy potentials, ESAIM COCV, 29, article number 73, 2023, https://doi.org/10.1051/cocv/2023059. ISI. SRI=1.490, FI=0.700, zona Q1.

8. Gabriela Marinoschi, A semigroup approach of a chemotaxis flow, Nonlinear Analysis, 230 (2023), 113222. https:// doi.org/ 10.1016/j.na.2023.113222. ISI. SRI=1.564, FI=1.077, zona Q1.

9. Tudor Barbu, Moving Object Detection and Tracking using Nonlinear PDE-based and Energy-based Schemes, ROMAI Journal, ed. ROMAI Society, Vol. 19, Number 1, sub tipar. BDI.

Conferinte organizate:

  • 28-30 septembrie 2023, Analysis & Control of Deterministic and Stochastic Differential Equations.

    2022

    Articole publicate:

    1. V. Barbu, The Trotter product formula for nonlinear Fokker–Planck flows, Journal of Differential Equations, in press, 2022, 20 p., FI = 2.43; SRI=2.19, zona Q1/AIS.

    2. G. Marinoschi, Identification of transmission rates and reproduction number in a SARS-COV-2 epidemic model, Discrete and Continuous Dynamics Systems, Series S, aparut online, doi:10.3934/dcdss.2022128. FI =1.865, zona Q2/AIS.

    3. C.-G. Lefter, E.-A. Melnig, Internal controllability of parabolic systems with star- and tree-like couplings, SIAM J. Control Optim. 60, No. 5, 3100-3126 (2022). FI=2.267; SRI=2.009, zona Q1/AIS.

    4. T. Barbu, Multiple Pedestrian Tracking Framework using Deep Learning-based Multiscale Image Analysis for Stationary-camera Video Surveillance, 8th IEEE International Smart Cities Conference 2022, ISC2 2022, Paphos, Cyprus, 26-29 september 2022, pp. 1-7. IEEE.

    5. T. Barbu, Nonlinear Hyperbolic PDE-based Filter for Mixed Poisson-Gaussian Noise Removal from X-ray Images, The 10th IEEE International Conference on e-Health and Bioengineering, EHB 2022, Iași, Romania, pp. 1-4, 17-18 Nov. 2022, IEEE.

    6. T. Barbu, A Novel Automatic Voice Recognition System using a Graph-Based Clustering Algorithm, Proceedings of World Research Society International Conference, pp. 59-64, Malmö, Sweden, August 1 – 2, 2022. ISBN: 978-93-90150-32-8.