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Introduction

The aim of this thesis is to study the controllability, stabilization and inverse stability

estimates associated to initial boundary value problems for parabolic equations and sys-

tems. The control problems we address, as well as the inverse estimates, involve control

and observation operators distributed in subdomains. When such operators are consid-

ered, a key tool in the approach is represented by the global Carleman estimates which

will play a central role in our work.

0.1. A general description of the field

Controllability of heat equation with boundary or internal controls was established

by D. Russell [90] in connection to similar problem for the wave equation and later by

G. Lebeau and L. Robbiano [66] without geometric condition. Controllability for general

linear parabolic equations, with internally distributed controls supported in a subdomain,

was established by O. Yu. Imanuvilov using appropriate global Carleman estimates for

the adjoint equation (see [57] for an introduction to the field). Local controllability of

nonlinear equations or systems may be deduced from controllability of the linearized

system. Such an approach, passing through the linearized problem, usually gives small

time local controllability results for the initial nonlinear problem. This step is typically

performed with the aid of a fixed point argument based on some corresponding fixed

point theorem like Kakutani Theorem for multivalued functions.

Carleman estimates are fundamental not only for the study of the linear problem in

the linearizations procedure, but also for the step of verifying certain hypotheses in appro-

priate fixed point theorems (see for example [11] or the survey [15]). Growth conditions

at infinity for the nonlinearity need to be imposed for obtaining global controllability

results (see [54, 49]).

An argument based on the regularizing properties of the parabolic flow gives Carleman

estimates in the L∞ − L1 framework and this is useful for deriving more regularity for

the controls in controllability problems (see [16]). This kind of argument may also be

found in [39] where L∞ estimates for the control are established; this result is then used

for local controllability in a L∞ neighborhood of a particular trajectory to a reaction-

diffusion system. Such estimates are involved in situations when state constraints are

imposed, like positivity in the models of reaction-diffusion processes [39, 40, 65].

Controllability of semilinear systems by a reduced number of controls is a challenging

problem and positive results may be obtained under appropriate conditions on the cou-

pling terms. The study of controlled systems of parabolic equations with fewer controls

than equations need appropriate Carleman estimates, with partial observations for the

2
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adjoint to the linearized system. This is for example the case of systems with cascade-like

couplings, with one control, studied in [59].

In some cases, like constant or time dependent coupling coefficients, one may provide

algebraic conditions of Kalman type involving the coupling operator and the control

operator, in order to obtain appropriate observability inequalities. In this direction we

refer to [4, 6].

When a good coupling is not verified, in the sense that the linearized system is not

controllable, an issue to exploit the nonlinearity is the return method of J.-M. Coron,

which consists in linearization along special solutions, constructed in such a way to fulfill

coupling requirements for the linearized system (see [38, 39, 40]).

A recent paper considering coupled linear systems (not only parabolic) and corre-

sponding observation estimates is the paper of E. Zuazua and P. Lissy [76] where the

equations in the system are linearly coupled with constant coefficients in the dominant

part and/or in the zero order terms; algebraic Kalman conditions for observability are

established.

The cost of approximate controllability relies also on a refined analysis of the Carleman

estimates and the dependence of the constants appearing in the estimates on the time

interval of observation (see [55]). Consequences of such refined estimates are unique

continuation results at initial time (see [70, 8]).

Stabilization by feedback controls for parabolic systems may pass also through a

linearizations procedure. The stabilization of the linearized system needs a Riccati type

approach for obtaining robust feedback laws, which are appropriate, at least locally, for

the nonlinear model. We mention for example the papers of V. Barbu and G. Wang

[12, 28] concerning stabilization of parabolic equations and the papers of V. Barbu, I.

Lasiecka, R. Triggiani [27, 21, 22, 23] for the stabilization of Navier-Stokes equations

(with either internal or boundary controls). In these papers the authors use Kalman

type conditions for finite dimensional projections of the equations on unstable subspaces

in order to construct feedback laws for the linearized problem, as a basis for solving

an appropriate Riccati equation. These Kalman conditions are obtained through some

unique continuation property for systems of eigenfunctions of the elliptic part.

An alternative approach to the Riccati equations is based on Lyapunov equation. A

Lyapunov equation associated to a linear problem gives appropriate equivalent norms

in corresponding function spaces, in which one is able to show local stabilization of

the nonlinear problem (see [67, 68]). In this approach one needs unique continuation

properties for systems of parabolic-elliptic equations which may be also derived from

Carleman estimates.

Estimates for the cost of approximate controllability are useful also in problems of

feedback stabilization of nonstationary solutions to parabolic systems, as it is done in

[26, 69].

For a recent book dedicated to parabolic and parabolic like problems (fluid dynamics

models, Navier-Stokes equations) we refer to the monograph of V.Barbu [18].

Inverse problems appear from practice and thus are of great importance from the point

of view of applications. Inverse problems refer to models in which some quantities are
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not known, like coefficients or sources, and one would like to obtain informations about

these quantities by some extra measurements on the solution. Stability estimates for the

unknown quantities are useful in developing stable algorithms for the approximation and

numerical approach. We mention here the book of M. Choulli [36] for an introduction to

the field. We will address in this thesis only stability estimates in Lp norm for the source

in parabolic systems and the starting point is the paper of O. Yu. Imanuvilov and M.

Yamamoto [61].

Regularity of the solutions to

(0.1) y′ + Ay = f, y(0) = 0, t ∈ (0, T )

with A the Lp realization of parabolic operator L with homogeneous boundary con-

ditions and sources from various function spaces based on the classical Hölder and

Sobolev spaces, is important in the analysis of the control and inverse problems. The

classical reference for existence and regularity of solutions to parabolic problems with

f ∈ Lp(Q) ' Lp(0, T ;Lp(Ω)) is the monograph by O. A. Ladyzenskja, V. A. Solonnikov,

N. N. Uralceva [64], where maximal regularity is obtained in the anisotropic Sobolev

spaces W 2,1
p (Q). The regularity of solutions to abstract parabolic problems and esti-

mates in real interpolation spaces, were considered in the paper of Gabriella Di Blasio

[46]; there, for f ∈ Lq(X), q ∈ (1,∞) one obtains S ∗ f ∈ W θ,q(X), θ ∈ (0, 1) and

S ∗ f ∈ Lq(DA(θ, q)), θ ∈ (0, 1) (here DA(θ, q) = (X,D(A))θ,q and W θ,q(X) is a vector

valued Sobolev-Slobodeckii space).

The existence and maximal regularity in concrete parabolic problems with X = Lp(Ω)

is established by W. von Wahl in [100], where estimates for S∗f ∈ Lq(D(A)), Dt(S∗f) ∈
Lq(X) in terms of norm of f ∈ Lq(0, T ;Lp(Ω)) with q, p > 1 are obtained by applying

a refined study of A. Benedek, A.P.Calderón, R. Panzone [29] on the convolution of

operators, using ideas from the theory of singular integrals.

When dealing with parabolic problems with nonhomogeneous boundary conditions,

a study of maximal regularity in Lq(Lp) spaces was established by P. Weidemaier [102,

103].

Maximal regularity in Lq(X) for an abstract parabolic problem is deeply related to

the geometry of X and properties of operator A. More precisely, if X is UMD space (a

space having the property that the vector valued Hilbert transform is bounded in Lq(X))

and A is sectorial with bounded imaginary powers, A ∈ BIP (X, θ), with spectral angle

θ < π
2
, then equation (0.1) has maximal regularity property: y ∈ W 1,q(X) ∩ Lq(D(A)).

We refer here to the monograph of C. Martinez Carracedo, M. Sanz Alix [79], Chapter 8

and the references therein. An essential ingredient in the approach of such problems is a

theorem of G. Dore and A. Venni characterizing invertibility of sums of operators in BIP

class.

The BIP class is important in our presentation of parabolic regularity; it allows to

characterize the domains of powers of positive operators defined by elliptic operators

with boundary conditions, as complex interpolation spaces. In such situation these are

closed subspaces of Bessel potential spaces (this important result is due to R. T. Seeley

[94]). Then, by using an argument based on extension operators one may relate these
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spaces to Sobolev-Slobodeckii spaces. Another ingredient we use in studying regularity is

represented by convolution estimates in Lr(D(Aγ)), by using estimates which are specific

to analytic semigroups, in domains of fractional powers of the generating operator.

As we are interested in Lp realizations of elliptic operators in bounded domains,

we mention that the boundedness of imaginary powers of such operators was proved

by R. T. Seeley in [96] by using a representation of the resolvent and the theory of

pseudodifferential operators ([95], [93]). A more direct approach to such results was

given by J. Prüss and H. Sohr in [88] (see also Th. 12.1.12 in [79]). We also mention

here the paper by R. Denk, G. Dore, M. Hieber, J. Prüss, A. Venni [41] for a study

of elliptic operators with Hölder coefficients in principal part, in connection to the H∞
calculus and the BIP property.

Concernig classical Gagliardo-Nirenberg inequalities for Sobolev-Slobodeckii spaces,

in the most general framework, we refer to the papers of H. Brezis and P. Mironescu [32],

[33].

0.2. Main results

Part 1. Stabilization of coupled parabolic systems

Chapter 1: Feedback stabilization with one simultaneous control for systems of para-

bolic equations. We study the local feedback stabilization of systems of parabolic equa-

tions in a bounded domain Ω ⊂ RN , N ∈ {2, 3} with C2 boundary, under only one

internally distributed control, supported in a bounded subdomain ω ⊂⊂ Ω and acting

simultaneously in both equations. We established a result of feedback stabilization based

on approximate controllability for the linearized system. This implies exact controllabil-

ity for the finite dimensional system and, consequently, this has the property of complete

stabilization. We may thus construct a feedback law stabilizing the finite dimensional

part and then prove that this is stabilizing the full linearized system. The fact that the

feedback law constructed in the linear case is also stabilizing the nonlinear system is

proved by using the solution of an appropriate Lyapunov equation. The system we study

is the following,

(0.2)


yt − d1∆y = f(y, z) + f1 + ψωu, in (0, T )× Ω,

zt − d2∆z = g(y, z) + g1 + ψωu, in (0, T )× Ω,

y(t, x) = 0, z(t, x) = 0, on (0, T )× ∂Ω,

y(0, x) = y0(x), z(0, x) = z0(x), in Ω.

where d1, d2 ∈ R+ are the diffusion coefficients, f, g : R×R −→ R are C∞ coupling non-

linearities, f1, g1 ∈ L∞(Ω), ψω ∈ C∞(Ω), supp ψω = ω, ψω > 0 in ω. u(t, ·) is the control

which belongs to L2(ω) and by ψωu we denote the extension by 0 of u to Ω multiplied by

ψω. In the following, Y, Y , Y0 denote vector functions (y, z)>, (y, z)>, (y0, z0)>.
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Let (y, z) ∈ (L∞(Ω))2 be a stationary state of the system. Then the controlled

linearized system is

(0.3)


ξt − d1∆ξ = a(x)ξ + b(x)η + ψωu, in (0, T )× Ω,

ηt − d2∆η = c(x)ξ + d(x)η + ψωu, in (0, T )× Ω,

ξ = 0, η = 0, on (0, T )× ∂Ω,

ξ(0) = ξ0, η(0) = η0, in Ω,

where

a(x) :=
∂f

∂y
(y, z), b(x) :=

∂f

∂z
(y, z), c(x) :=

∂g

∂y
(y, z), d(x) :=

∂g

∂z
(y, z).

Let H be the Hilbert space L2(Ω)× L2(Ω) and consider the operators

A : D(A) ⊂ H −→ H, D(A) = (H1
0 (Ω) ∩H2(Ω))2, A =

(
d1∆ 0

0 d2∆

)
,

A0 : D(A0) = H −→ H, A0 =

(
a b

c d

)
, B : L2(ω) −→ H, Bu =

(
ψωu

ψωu

)
and

A := A+ A0.

Denoting by

γ(x) = [a(x) + b(x)− c(x)− d(x)],

α(x) :=

[
(c(x)− a(x))− d1γ(x)

d2 − d1

]
=

[
(b(x)− d(x))− d2γ(x)

d2 − d1

]
and

LTv := ∆v +
γ(x)

d1 − d2

v, D(LT ) = H1
0 (Ω) ∩H2(Ω),

the stabilization result that will be proved for the linearized system is the following:

Theorem 1.1. Suppose that the diffusion coefficients are distinct d1 6= d2 and one

of the following assumptions is true:

• α is not identically constant in ω, or

• α is a constant in Ω and 0 6∈ σ(LT ).

Then the following conclusions hold:

(i) The operator A = A + A0 has compact resolvent and generates an analytic

semigroup in H;

(ii) The linear system (0.3) is approximately controllable in any time T ;

(iii) For any δ > 0 there exist C = C(δ) > 0, a finite dimensional subspace U ⊂ L2(ω)

and a linear continuous operator K ∈ L(H,U) such that the operator A + BK

generates an analytic semigroup of negative type satisfying

(0.4) ‖et(A+BK)‖H ≤ Ce−δt, t > 0.

The main result of the chapter concerning the stability around the stationary state

of the nonlinear system is

Theorem 1.2. In the hypotheses of the above Theorem, we have that there exist

ε > 0, δ > 0, C > 0, τ > 0 such that if ‖y0 − y‖L∞∩H1(Ω) + ‖z0 − z‖L∞∩H1(Ω) ≤ ε then,
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taking in (0.2) the feedback constructed in the above Theorem

(0.5) u = K(Y − Y ),

we have local exponential stabilization:

(0.6)
‖Y (t)− Y ‖Hs(Ω) ≤ Ce−δt‖Y0 − Y ‖H1∩L∞(Ω), t > τ, s ∈ [0, 2],

‖Y (t)− Y ‖H1∩L∞(Ω) ≤ Ce−δt‖Y0 − Y ‖H1∩L∞(Ω), t > 0.

Chapter 2: Internal feedback stabilization for parabolic systems coupled in zero and

first order terms. We study the local feedback stabilization for systems of parabolic equa-

tions in one dimension, i.e. on a bounded interval Ω ⊂ R. The equations are coupled in

either first or zero order terms and we consider general boundary conditions, arbitrarily

mixing Dirichlet, Neumann and Robin conditions. Under algebraic conditions of Kalman

type concerning the coupling matrices of coefficients, we establish finite dimensional feed-

back stabilization with internal controls distributed in a subdomain ω ⊂ Ω and acting in

part of the equations through a control matrix.

The strategy is to first linearize the nonlinear system around the stationary state and

to prove approximate controllability for it. For systems of two equations we treat the

case of couplings in both zero and first order terms and homogeneous Dirichlet boundary

conditions. For systems of n ≥ 3 equations, we will treat separately the cases of first or

zero order couplings. The approximate controllability is obtained by proving the unique

continuation property for the adjoint system under corresponding Kalman type conditions

satisfied by the coupling matrix and the control matrix.

We consider an abstract formulation for the given problem as an evolution problem in

a Hilbert space. With the result of approximate controllability for the linearized system

at hand, we use a spectral decomposition of this Hilbert space with respect to the elliptic

operator in a direct sum of closed and invariant subspaces for the semigroup. Moreover,

one of these subspaces is finite dimensional, corresponding to the eigenvalues with positive

real part (that is the unstable subspace) and the other one is infinite dimensional but

stable. With this decomposition of the space we consider the controlled system projected

onto these subspaces and we study the controllability of the finite dimensional system.

The approximate controllability gives the exact controllability for the system in any time

in the finite dimensional subspace and, consequently, complete stabilization for it. We

stabilize by a feedback control the finite dimensional projection of the system and we

prove, using the norm given by the solution to an appropriate Lyapunov equation, that

this finite dimensional feedback control stabilizes the whole nonlinear system.

For ω ⊂⊂ Ω an open nonempty subset of Ω, we consider the controlled parabolic

system

(0.7)


Dty − Ly + F (Dxy, y) = g +Bχωu, t > 0, x ∈ Ω,

(BC) :

{
Γ1Dxy(t, 0) + Γ2y(t, 0) = 0,

Γ3Dxy(t, l) + Γ4y(t, l) = 0,
t > 0,

y(0, x) = y0(x), x ∈ Ω,
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where y = (y1, · · · , yn)>, Ly = (Ly1, · · · , Lyn)> with L an uniformly elliptic operator of

second order,

Ly = D2
xy + η1(x)Dxy + η0(x)y, η0 ∈ L∞(Ω), η1 ∈ W 1,∞(Ω).

The equations are coupled in either first or zero order terms through a C∞ function,

F (ζ, y) = (f1(ζ, y), · · · , fn(ζ, y))>, F : Rn×Rn −→ R and in the right-hand side the free

term g = (g1, · · · , gn)> is L∞(Ω). The control is given by Bχωu, B ∈ Mn×m(R), u ∈
L2((0, T ); [L2(ω)]m), where χωu is the extension of u by 0 to the whole Ω. For a general

formulation of these boundary conditions we choose diagonal matrices Γ1,Γ2,Γ3,Γ4 ∈
Mn×n(R) with the properties

(0.8)
Γi = diag(γji )j=1,n, ∀i = 1, 4, j = 1, n,

rank[Γ1,Γ2] = rank[Γ3,Γ4] = n.

We consider a stationary solution of the uncontrolled system, denoted by y. The linear

system obtained through linearization of the nonlinear system around the stationary state

is

(0.9)

{
Dtw − Lw + A1(x)Dxw + A0(x)w = Bχωu, t > 0, x ∈ Ω,

Γ1Dxw(t, 0) + Γ2w(t, 0) = Γ3Dxw(t, l) + Γ4w(t, l) = 0 t > 0,

where A0(x), A1(x) ∈Mn×n(R),

A1(x) =

(
∂fi
∂ζj

(Dxy, y)

)
i,j=1,n

, A0(x) =

(
∂fi
∂yj

(Dxy, y)

)
i,j=1,n

.

The aim of the chapter is to find a control in feedback form u = K(y − y), such that

it stabilizes the controlled system (0.7) around the stationary state y with respect to a

topology to be precised later.

We construct the abstract formulation for the given problem as an evolution problem

in a Hilbert space:

H = [L2(Ω)]n is the Hilbert space and

A : D(A) ⊂ H −→ H, D(A) = {y ∈ [H2(Ω)]n|y satisfies (BC) of (0.7)}, Ay = Ly,

A : D(A) = D(A), Ay = Ly − A1(x)Dxy − A0(x)y,

with the control operator

B : L2(ω)m −→ H, Bu = Bχωu.

For a system of two coupled equations for w = (w1, w2), with differential operator L

with constant coefficients η0, η1 ∈ R and possibly nonconstant couplings, under Dirichlet

homogeneous boundary conditions:

(0.10)


Dtw1(t, x)− Lw1(t, x) +a(x)Dxw1 + b(x)Dxw2

+α(x)w1 + β(x)w2 = χωu, t > 0, x ∈ Ω,

Dtw2(t, x)− Lw2(t, x) +c(x)Dxw1 + d(x)Dxw2

+γ(x)w1 + δ(x)w2 = 0, t > 0, x ∈ Ω,

w(t, 0) = w(t, l) = 0, t > 0.
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If we consider the notations,

(0.11)
h(x) :=

γ(x)− c′(x)

c(x)
,

k(x) := −h2(x)− h′(x) + [η1 − d(x)]h(x)− η0 + δ(x)− d′(x),

for c(x) 6= 0 in ω, we have the following results concerning the approximate controllability

for the above linear systems:

Theorem 2.1. For the linear system (0.10), with η0, η1 ∈ R, if c(x) 6= 0 for x ∈ ω
and one of the following hypotheses are verified

(H1) the coefficients of the system are constants in the whole domain,

a, b, c, d, α, β, γ, δ ∈ R;

(H2) the coupling coefficients are continuous in Ω, maybe nonconstant, and the func-

tion k = k(x) is not constant in ω;

then the linear system (0.10) is approximately controllable in time T .

For the system (0.9) we have the following results concerning the approximate con-

trollability:

Theorem 2.2. Consider the linear system (0.9) with constant coefficients η0, η1 and

with constant couplings of order zero, A1 ≡ 0. If the following Kalman condition holds,

(0.12) rank [A0|B] = n,

then the linear system (0.9) is approximately controllable in time T .

Regarding the case of constant couplings of order one, we have the following result:

Theorem 2.3. Consider the linear system (0.9) with constant coefficients η0, η1

and with constant couplings of order one, A0 ≡ 0, A1 ∈ Mn×n(R). Suppose also that

the following algebraic conditions concerning coupling matrix and matrices entering the

boundary conditions are satisfied:

(0.13) rank [A1|B] = n,

(0.14) kerB> ∩ ker(Γ2 + Γ1(A>1 + η1I)) ∩ ker(Γ4 + Γ3(A>1 + η1I)) = {0}

then the linear system (0.9) is approximately controllable in time T .

In either of the cases when approximate controllability is verified, we prove the fol-

lowing feedback stabilization result for the linearized system:

Theorem 2.4. For the linear system (0.9), in the framework of either of Theorems

2.1, 2.2 or 2.3, for any δ > 0 there exist C = C(δ) > 0, a finite dimensional subspace

U ⊂ L2(ω) and a bounded linear operator K ∈ L(H,U) such that the operator A+ BK
generates an analytic semigroup of negative type that satisfies

(0.15) ‖e(A+BK)t‖H ≤ Ce−δt, t > 0.
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Based on the stabilization results in the linear case, we prove by using an argument

related to Lyapunov equation, a local feedback stabilization result:

Theorem 2.5. Consider the nonlinear system (0.7) and suppose that we are in the

framework of either of Theorems 2.1, 2.2 or 2.3 for the linearized system.

Let ν ∈ (3
4
, 1). Then there exist ε > 0, δ > 0, C > 0, such that if y0 ∈ H2ν(Ω) verifies

the boundary conditions (BC) in (0.7) and ‖y0 − y‖H2ν(Ω) ≤ ε then, taking in (0.7) the

feedback constructed in Theorem 2.4

(0.16) u = K(y − y)

one has exponential stabilization:

(0.17) ‖y(t)− y‖H2ν(Ω) + ‖y(t)− y‖L∞(Ω) ≤ Ce−δt‖y0 − y‖H1(Ω), t > 0.

Part 2. Controllability of coupled parabolic systems

Chapter 3: Internal controllability of parabolic systems with star and tree like cou-

plings. In this chapter we consider semilinear systems of parabolic equations coupled in

zero order terms. We are interested in controllability of such systems to stationary so-

lutions by only one control distributed in a subdomain and acting in only one of the

equations. The key hypotheses insuring local controllability refer to the structure of the

couplings, which describe either a star or a tree type graph, and to the support of the

coupling functions or, in the linear case, to the support of the coupling coefficients.

The strategy for proving the controllability result relies on the linearization of the

nonlinear system around a stationary state. The key step is obtaining the null control-

lability for this linear system by using an observability inequality for the adjoint system.

This observability inequality is consequence of an appropriate global Carleman estimate.

This in turn is obtained by combining Carleman estimates for each of the equation, but

relying on diferent auxiliary functions, which are in a particular order relation, made pos-

sible by the special structure of the system. The idea of using different auxiliary functions

in Carleman estimates is inspired by the work of G. Olive [85] concerning controllability

of parabolic systems with controls acting in different subdomains.

Passing from the linearized system to the nonlinear one needs an L∞ framework for

the controlability of the linear system because the Carleman estimates we obtain are

sensitive to zero order perturbations of the system. More regularity of the controls in the

linearized problem is obtained as in the work of V. Barbu [16] (see also [39]) by using

regularizing properties of the parabolic flow in a bootstrap argument. This allows an

approach to the controllability of the nonlinear system by a fixed point argument, based

on Kakutani theorem, as in the work of J.-M. Coron, S. Guerrero and L. Rosier [39] or

[11]. In fact the proof of this step follows the same lines as in [39] where the return

method is used and the linearization is performed around a particular trajectory, such
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that the linearized system is well coupled; this also is a situation where an L∞ framework

for the controllability is necessary by the same reason as in the case we are considering.

In the first part of the chapter we study systems of parabolic equations with star-like

couplings which refer to the situation where yk is actuated in the corresponding parabolic

equation through a nonlinearity depending only on y0, yk. Such a star-like coupled system

has the form:

(0.18)


Dty0 −∆y0 = g0(x) + f0(x, y0) + χω0u, in (0, T )× Ω,

Dtyi −∆yi = gi(x) + fi(x, y0, yi), i ∈ 1, n, in (0, T )× Ω,

y0 = ... = yn = 0, on (0, T )× ∂Ω,

y(0, ·) = y0, in Ω,

where gi ∈ L∞(Ω), i = 0, n. Concerning the coupling terms we assume the following:

(H1) fi : RN × R × R −→ R are C1 functions and there exist ω1, ...ωn ⊂ Ω open

nonempty subsets of Ω such that

(0.19) (ωi ∩ ω0) \
⋃
j 6=0,i

ωj 6= ∅, ∀i ∈ 1, n,

and for all i ∈ 1, n we have

(0.20) fi(x, y0, yi) = 0 ∀x ∈ Ω \ ωi, y0, yi ∈ R;

(H2) The following coupling condition holds:

(0.21) supp
∂fi
∂y0

(x, y0(x), yi(x)) ∩
{

(ωi ∩ ω0) \
⋃
j 6=0,i

ωj

}
6= ∅,

The control function is u : [0, T ]× ω0 −→ R, acting in the equation of y0 and controlling

the other components of the solution, y1, ..., yn, through the action of y0 in each equation,

on the corresponding subdomain ωi, i ∈ 1, n.

We consider first a controlled linear system which will appear through a linearization

procedure around a stationary state y = (y0, ..., yn) ∈ [L∞(Ω)]n+1:

(0.22)


Dtz0 −∆z0 = c0(t, x)z0 + χω0u, in (0, T )× Ω,

Dtzi −∆zi = ai0(t, x)z0 + ci(t, x)zi, i ∈ 1, n, in (0, T )× Ω,

z0 = ... = zn = 0, on (0, T )× ∂Ω,

For M, δ > 0, and open subsets ωi ⊂⊂ (ωi ∩ ω0) \
⋃
j 6=0,i ωj we introduce the following

classes of coefficients sets:

(0.23)

EM,δ,{ωi}i =

{
E = {ai0, cj}i∈1,n,j∈0,n : ai0, cj ∈ L∞(Q), ‖ai0‖L∞ , ‖cj‖L∞ ≤M ;

ai0 = 0 in Q \Qωi , and |ai0| ≥ δ on Qωi
,∀i, j

}
.

We prove first that such linear systems with coefficients in EM,δ,{ωi}i are null controllable

with norm L2 and L∞ of the control uniformly bounded by a constant C = C(M, δ, {ωi}i).
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In order to achieve this goal we consider the adjoint system:

(0.24)


−Dtp0 −∆p0 = c0(t, x)p0 +

∑n
i=1 ai0(t, x)pi, (0, T )× Ω,

−Dtpi −∆pi = ci(t, x)pi, i ∈ 1, n, (0, T )× Ω,

p0 = ... = pn = 0, (0, T )× ∂Ω,

and we prove an observability inequality as consequence of an appropriate Carleman

estimate. We consider the open subsets

ω̃j ⊂⊂ ωj

and denote as above by Qω̃j = (0, T )× ω̃j.
The Carleman estimates we establish need a particular choice of auxiliary and weight

functions. We consider

(0.25) α(t) = αλ(t) :=
eλψ − e1.5λψ

t(T − t)
, α(t) = αλ(t) :=

eλψ − e1.5λψ

t(T − t)
,

(0.26) ψ = sup
x∈Ω

sup
i=0,n

ψi(x) + ε, ψ = inf
x∈Ω

inf
i=0,n

ψi(x)− ε,

with the family of auxiliary functions {ψi} similar to the corresponding function in the

classical Carleman estimates, but each of them concentrating its critical points in ω̃i and

0 < ε < inf ψi, i ∈ 0, n. A supplementary technical assumption is

(0.27)
supψi
inf ψi

<
8

7
, ∀i = 0, n.

The fundamental result in Chapter ?? concerns the Carleman estimate for our problem:

Theorem 3.1. There exist constants λ0, s0 such that for λ > λ0 there exists a

constant C > 0 depending on (M, δ, {ωi}i, λ), such that, for any s ≥ s0, the following

inequality holds:

(0.28)

∫
Q

(|Dtp|2 + |D2p|2 + |Dp|2 + |p|2)e2sαdxdt

≤ C

∫
Qω0

|p0|2e2sαdxdt

for all p ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) solution of (0.24).

Moreover, there exist m0 ∈ N and δ1 > 0 such that for the homogeneous adjoint

system (i.e. taking g ≡ 0), we have the following L∞ − L2 Carleman estimate

(0.29) ‖pe(s+m0δ1)α‖L∞(Q) ≤ C‖p0e
sα‖L2(Qω0 ).

The main controllability result concerning for linear system (0.22) is the following

Theorem 3.2. Consider system (0.22) with coefficients in EM,δ,{ωi}i . Then there ex-

ists a constant C = C(M, δ, {ωi}i) such that for all z0 ∈ H there exists u∗ ∈ L2(0, T ;L2(ω0))∩
L∞(Qω0) which drives in 0 the corresponding solution z = zu

∗
to (0.22) with z(0, ·) = z0,

i.e. z(T, ·) = 0, and satisfies the norm estimate

(0.30) ‖u∗e−sα‖L2(0,T ;L2(ω0)) + ‖u∗‖L∞(Qω0 ) ≤ C‖z0‖L2(Ω).
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Regarding the local controllability for the nonlinear system with star-like couplings we

have the following result:

Theorem 3.3. Suppose y is a stationary state to the uncontrolled system (0.18) and

that the functions fj, j ∈ 0, n satisfy hypotheses (H1), (H2). Then, for all β0 > 0 there

exist ζ0 = ζ0(β0) > 0 and C = C(β0, {ωi}i, y) such that if ‖y0− y‖L∞(Ω) < ζ0 there exists

a control u ∈ L∞(Qω0) and the corresponding solution y = yu to (0.18) such that

‖u‖L∞(Qω0 ) ≤ C‖y0 − y‖L∞(Ω)

with

yu(T, ·) = y and ‖yu(t, ·)− y‖L∞(Ω) ≤ β0, t ∈ [0, T ].

Now, we describe in the following what we mean by a linear system with tree-like

couplings. This would be a parabolic system of the form

(0.31)


Dtz0 −∆z0 = c0(t, x)z0 + χω0u, in (0, T )× Ω,

Dtzi −∆zi = aik(i)(t, x)zk(i) + ci(t, x)zi, i ∈ 1, n, in (0, T )× Ω,

z0 = ... = zn = 0, on (0, T )× ∂Ω,

z(0, ·) = z0, in Ω,

with the following assumptions on the function k : {1, . . . , n} → {1, . . . , n}:

(0.32) ∀i ∈ {1, . . . , n},∃m = m(i), 1 ≤ m ≤ n− 1, (k◦)m(i) = k ◦ . . . ◦ k(i) = 0.

Denote by

Ij = k−1(j) = {i ∈ 1, n : k(i) = j}.
Fix now a family of open subsets ωi ⊂ Ω, i ∈ 1, n such that

(0.33) Di := ωi ∩ ωk(i) ∩ · · · ∩ ω(k◦)m(i) 6= ∅.

(0.34) Di \
⋃

j 6=i,k(j)=k(i)

ωj 6= ∅.

Choose further a family of open subsets {ωj}j∈0,n with the properties

ω0 ⊂⊂ ω0, ωi ⊂⊂ Di \
⋃

l 6=i,k(l)=k(i)

ωl(0.35)

ωi ⊂⊂ ωk(i) ⊂⊂ ω0, i ∈ 1, n.(0.36)

For M, δ > 0, and the family of open subsets described above {ωi}i, we introduce the

following classes of coefficients sets:

(0.37)

EM,δ,{ωi}i,k =

{
E = {aik(i), cj}i∈1,n,j∈0,n : aik(i), cj ∈ L∞(Q), ‖aik(i)‖L∞ , ‖cj‖L∞ ≤M ;

aik(i) = 0 in Q \Qωi , and |aik(i)| ≥ δ on Qωi
,∀i ∈ 1, n

}
.
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The main result concerning controllability with one control for linear parabolic systems

with tree-like couplings is the following:

Theorem 3.5. Consider system (0.31) with coefficients in ẼM,δ,{ωi}i . Then there ex-

ists a constant C = C(M, δ, {ωi}i) such that for all z0 ∈ H there exists u∗ ∈ L2(0, T ;L2(ω0))∩
L∞(Qω0) which drives in 0 the corresponding solution z = zu

∗
of (0.31), i.e. z(T, ·) = 0,

and the control satisfies the norm estimate

(0.38) ‖u∗e−sα‖L2(0,T ;L2(ω0)) + ‖u∗‖L∞(Qω0 ) ≤ C‖z0‖L2(Ω).

Controllability of nonlinear semilinear parabolic systems with tree-like couplings may

be studied in analogy to the star-like case. For this, consider systems of the form

(0.39)


Dty0 −∆y0 = g0(x) + f0(x, y0) + χω0u, in (0, T )× Ω,

Dtyi −∆yi = gi(x) + fi(x, yk(i), yi), i ∈ 1, n, in (0, T )× Ω,

y0 = ... = yn = 0, on (0, T )× ∂Ω,

y(0, ·) = y0, in Ω,

where gj ∈ L∞(Ω), j ∈ 0, n and y = (y0, ..., yn) ∈ [L∞(Ω)]n+1 is a corresponding station-

ary solution. We assume the following hypotheses on the nonlinearities:

(H1’) f0 ∈ C1(Ω × R), fi ∈ C1(Ω × R × R), i ∈ 1, n there exist ω1, ...ωn ⊂ Ω open

nonempty subsets of Ω satisfying (0.33), (0.34) and

(0.40) (ωi ∩ ωk(i)) \
⋃

j 6=i,k(j)=k(i)

ωj 6= ∅, ∀i ∈ 1, n,

and for all i ∈ 1, n we have

(0.41) fi(x, τ, ξ) = 0 ∀x ∈ Ω \ ωi, τ, ξ ∈ R;

(H2’) For a family of subdomains {ωi}i satisfying (0.35), (0.36), by defining for i ∈ 1, n

the coefficients

a0
ik(i)(x) :=

∂fi
∂yk(i)

(x, yk(i)(x), yi(x))

c0
0(x) :=

∂f0

∂y0

(x, y0(x)), c0
i (x) :=

∂fi
∂yi

(x, yk(i)(x), yi(x)),

we assume that for some M0, δ0 > 0 we have

(0.42) {a0
ik(i), c

0
j}i∈1,n,j∈0,n ∈ EM0,δ0,{ωi}i,k.

Theorem 3.6. Suppose y is a stationary state to uncontrolled problem (0.39) and

that functions fj, j ∈ 0, n satisfy hypotheses (H1’), (H2’). Then, for all β0 > 0 there exist

ζ0 = ζ0(β0) > 0 and C = C(β0, {ωi}i, y) such that if ‖y0 − y‖L∞(Ω) < ζ0 there exists a

control u ∈ L∞(Qω0) satisfying

‖u‖L∞(Qω0 ) ≤ C‖y0 − y‖L∞(Ω)

and the corresponding solution y = yu to (0.39) verifies

yu(T, ·) = y, with ‖yu(t, ·)− y‖L∞(Ω) ≤ β0, t ∈ [0, T ].
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Part 3. Inverse source problems for parabolic systems

Chapter 4: Stability in Lq-norm for inverse source parabolic problems. We consider

systems of linear parabolic equations in bounded subdomains of RN , coupled in zero

and first order terms. The question we address is the Lipschitz stability in Lq-norms,

2 ≤ q ≤ ∞ for the source, using observations on the solution in a subdomain. Our result

is in the spirit of the results obtained by O. Yu. Imanuvilov and M. Yamamoto in [61] for

one linear parabolic equation in L2 norm. We also treat in this chapter the question of

partial observations in stability problems, meaning observations on a reduced number of

components of the solution. The main tool in our approach is a class of global Carleman

estimates. The first result in this chapter is a family of Lq estimates, with general

weights, for nonhomogeneous systems of parabolic equations. These are derived through

a bootstrap argument, relying on the regularizing effect of parabolic flows, and based

on a family of Carleman estimates in L2 norms with general weights. We use the result

in [61] and the family of Carleman Lq inequalities to obtain Lq estimates, q ∈ [2,+∞),

for the inverse source problem. Based on the Lq result and using the approach in [61]

which uses Carleman estimates for the parabolic system obtained by derivation, we get

L∞ source estimates. Let N ≥ 2, Ω ⊂ RN a bounded domain with C2 boundary ∂Ω,

T > 0 and Q := (0, T )× Ω . Consider a fixed θ ∈ (0, T ) to be the observation instant of

time and with no loss of generality can be taken T
2
.

We consider a system of n linear parabolic equations coupled in zero and first order

terms:

(0.43)

{
Dtyi + Liyi + L1

i y + L0
i y = gi, in (0, T )× Ω, i = 1, n

yi = 0, on (0, T )× ∂Ω, i = 1, n

where y := (y1, ..., yn)> and {Li}i=1,n is a family of uniformly elliptic operators of second

order in divergence form

(0.44) Liyi := −
N∑

j,k=1

Dj(a
jk
i Dkyi) i = 1, n.

The coefficients ajki belong to W 1,∞(0, T ;W 1,∞(Ω)) and satisfy usual ellipticity condition

(0.45)
N∑

j,k=1

ajki (t, x)ξjξk ≥ µ|ξ|2, ∀ξ ∈ RN , (t, x) ∈ Q, for some µ > 0.

The coupling operators are of the form

L1
i y =

∑
k=1,N
l=1,n

bkli Dkyl, L0
i y =

∑
l=1,n

cliyl, i = 1, n,

with coefficients bj,ki , c
l
i ∈ W 1,∞(0, T ;L∞(Ω)).



0.2. MAIN RESULTS 16

For q ≥ 2, c̃ > 0, δ̃ > 0 and some g̃ ∈ [Lq
′
(Q)]n, g̃ 6= 0 (q′ = q

q−1
) consider the space of

sources for (0.43):

(0.46) Gq,c̃,δ̃,g̃ =

 g ∈ W 1,1((0, T ); [Lq(Ω)]n) :
∫
Q
g · g̃ ≥ δ̃‖g‖Lq(Q),∣∣∣∂g(t,x)

∂t

∣∣∣ ≤ c̃|g(θ, x)|, a.e. (t, x) ∈ (0, T )× Ω

 .

For the system (0.43) we consider the sources g = (gi)i=1,n from the cone Gq,c̃,δ̃,g̃. We

are interested in obtaining Lq estimates for them in terms of the solution y = (yi)i=1,n

measured in Qω := (0, T )×ω, for some open set ω ⊂⊂ Ω. The first result in this chapter is

a family of Lq estimates, with general weights, for nonhomogeneous systems of parabolic

equations.

We consider a function ψ ∈ C2(Ω) such that

1

3
≤ ψ ≤ 4

3
, ψ|∂Ω =

1

3
, {x ∈ Ω : |∇ψ(x)| = 0} ⊂⊂ ω.

One also considers the weight functions

(0.47) ϕ(t, x) :=
eλψ(x)

t(T − t)
, α(t, x) :=

eλψ(x) − e1.5λ‖ψ‖C(Ω)

t(T − t)
.

Our result, proved in §??, is the following:

Theorem 4.1. (Lq-Carleman estimate) Let g ∈ (Lq(Q))n, with q <∞, and k0 ∈ R.

Then there exist λ0 = λ0(q, k0), s0 = s0(q, k0), C = C(q, k0) and m = m(q) such that, for

any λ ≥ λ0, s ≥ s0 and y a solution to (0.43), the following inequality holds:

(0.48)

‖ϕk0−2m−1yesα‖Lq(Q) + ‖(sλ)−1ϕk0−2m−2Dyesα‖Lq(Q)

+ ‖(sλ)−2ϕk0−2m−4Dtye
sα‖Lq(Q) + (sλ)−2‖ϕk0−2m−4D2yesα‖Lq(Q)

≤ C
[
(sλ)2m‖ϕk0yesα‖L2(Qω) + (sλ)2m− 3

2‖ϕk0+3gesα‖Lq(Q)

]
.

If N + 1 < q <∞ we have a Cγ estimate for y, with γ = 1− (N + 1)/q:

(0.49)
‖ϕk0−2m−1yesα‖Cγ(Q) ≤

≤ C
[
(sλ)2m+2‖ϕk0+2yesα‖L2(Qω) + (sλ)2m+ 1

2‖ϕk0+5gesα‖Lq(Q)

]
.

The main result regarding the inverse source problem is obtaining an estimate on the

source g = (g1, ..., gn)> using data on the solution measured on a subdomain, ω ⊂ Ω. The

first such result is the following and concerns estimates of the source in Lq norm q ≥ 2:

Theorem 4.2. Let q ∈ [2,∞), c̃ > 0, δ̃ > 0 and g̃ ∈ [Lq
′
(Q)]n, g̃ 6= 0. Then there

exists a constant C = C(q, c̃, δ̃, g̃) > 0 such that for sources g ∈ Gq,c̃,δ̃,g̃ of (0.43) and

corresponding solutions y ∈ Lq
(
0, T ; (W 1,q

0 ∩W 2,q(Ω))n
)

the following estimate holds:

(0.50) ‖g‖Lq(Q) ≤ C
(
‖y‖Lq(Qω) + ‖y (θ, ·)‖W 2,q(Ω)

)
.
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For stability estimates of the source in L∞ norm we assume that the sources are more

regular, belonging to Cγ(Q) for some γ ∈ (0, 1). In fact, we need only g(θ, ·) ∈ Cγ(Ω).

Theorem 4.3. Suppose that the coefficients of the operators Li, L
1
i , L

0
i are smooth

in Q. Let γ ∈ (0, 1) and consider sources in (0.43) with Hölder regularity g ∈ (Cγ(Q))n∩
Gq,c̃,δ̃,g̃, q = N+1

1−γ . Then there exists C = C(γ, c̃, δ̃, g̃) > 0, such that

(0.51) ‖g‖L∞(Q) ≤ C
(
‖y‖Lq(Qω) + ‖y (θ, ·)‖C2+γ(Ω)

)
.

Chapter 5: Stability in inverse source problems for nonlinear reaction-diffusion sys-

tems. We consider systems of semilinear parabolic equations, coupled in zero order terms,

and we study an inverse problem addressing the question of source estimation in Lq and

L∞ norms in terms of norms of the solution measured in a subdomain. The systems we

study arise from reaction-diffusion models, physical phenomena like heat transfer, popula-

tion dynamics, etc. In this context the sources have positive entries and also the solutions

remain in the cone of positive functions as some extra hypotheses on the nonlinear part,

related to parabolic maximum principle, are assumed.

Our result has as starting point the work of O. Yu. Imanuvilov and M. Yamamoto,

[61], where the authors have considered linear parabolic equations in bounded domains

and established L2 estimates for the source. In this chapter we improve the result to the

more general case of Lq, respectively L∞ estimates for the source, in a linearized model,

and apply these results to nonlinear models of reaction-diffusion systems. We are able

to obtain a sharper source estimate, without involving the time derivative of the solution

in the right side of the estimates and the method uses a family of Carleman estimates

with generalized weights and an argument based on the maximum principle for coupled

parabolic systems.

We use the L2 Carleman estimates as the start point to a bootstrap procedure, which

leads to a corresponding class of Lq, q ≥ 2 Carleman estimates with independent param-

eters and generalized weights of exponential type for nonhomogeneous parabolic systems

with various homogeneous boundary conditions. The bootstrap argument is based on

the regularizing effect of the heat flow in Lp spaces (see, for example,the monograph of

O. A. Ladyzenskaja, V. A. Solonikov, N. N. Ural’ceva, [64]). Let Ω ⊂ RN be a bounded

domain with smooth boundary, ω ⊂⊂ Ω be an open nonempty subset of Ω, T > 0 and

Q = (0, T )× Ω.

We denote by (Li)i=1,n a family of n uniformly elliptic operators of second order in

divergence form

(0.52) Liw = −
N∑

j,k=1

Dj(a
jk
i Dkw)

with coefficients ajki ∈ W 1,∞(0, T ;W 1,∞(Ω)), i = 1, n, j, k = 1, N . Denote by Ai =

(ajki )j,k=1,N the matrix of coefficients in principal part which we assume satisfying the
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usual uniform ellipticity condition

(0.53) ∃µ > 0 s.t.
N∑

j,k=1

ajki (t, x)ξjξk ≥ µ|ξ|2, ∀ξ ∈ RN , (t, x) ∈ Q, i = 1, n.

Consider also the first order operators (w is considered a scalar function),

(0.54) L1
iw =

N∑
k=1

bkiDkw, i = 1, n,

with coefficients bki ∈ W 1,∞(0, T ;L∞(Ω)).

We study the following reaction-diffusion system of n coupled parabolic equations

(0.55)

 Dtyi −
N∑

j,k=1

Dj(a
jk
i Dkyi) + L1

i yi + fi(y1, ..., yn) = gi, (0, T )× Ω,

βi(x) ∂yi
∂nAi

+ ηi(x)yi = 0, (0, T )× ∂Ω,

where gi ≥ 0, i = 1, n are the internal sources acting in each equation of the system. In

the following, when referring to a vector function g = (gi)
>
i∈1,n

to be positive, like g ≥ 0,

we consider the inequality satisfied on each component of the vector, gi ≥ 0, i = 1, n.

In the boundary conditions, we denoted by ∂
∂nAi

the conormal derivatives, ∂y
∂nAi

=

〈Ai∇y, n〉, Ai = (ajki )j,k. We impose that βi, ηi ∈ C2(∂Ω) such that

(0.56) βi > 0 on ∂Ω or βi ≡ 0 and ηi ≡ 1 on ∂Ω.

The coupling is given through the C1 nonlinearities fi : Rn −→ R with fi(0) = 0, i = 1, n

and we introduce the following hypotheses:

(H1) (quasimonotonicity) for some ε0 > 0, ∂fi
∂yj

(y1, . . . , yn) ≤ 0, y ∈ Vε0(0) := {y ≥ 0,

‖y‖ ≤ ε0}, j 6= i, i, j = 1, . . . , n;

(H2) fi(y1, . . . , yi−1, 0, yi+1, . . . , yn) ≤ 0, i = 1, n, y ≥ 0.

In the following we consider a fixed instant of time θ ∈ (0, T ) which can be chosen,

for the ease of computations θ = T
2
.

In order to describe the framework of our problem, we introduce the following sets of

functions (sources and corresponding solutions).

Let G̃ be a compact subset of [Lq
′
(Q)]n with q′ = q

q−1
such that 0 /∈ G̃. For q ≥ 2, c̃ > 0,

δ̃ > 0 consider the sets of sources:

(0.57) Gq,δ̃,G̃ =

{
g ∈ W 1,1((0, T ); [Lq(Ω)]n) : g ≥ 0

and ∃g̃ ∈ G̃ s.t.
∫
Q
g · g̃dxdt ≥ δ̃‖g‖Lq(Q)

}
and

(0.58) Gq,c̃,δ̃,G̃ =


g ∈ W 1,1((0, T ); [Lq(Ω)]n) : g ≥ 0,∣∣∣∂g(t,x)

∂t

∣∣∣ ≤ c̃|g(θ, x)|, a.e. (t, x) ∈ (0, T )× Ω

and ∃g̃ ∈ G̃ s.t.
∫
Q
g · g̃dxdt ≥ δ̃‖g‖Lq(Q)

 .

Also, consider the set of functions,

(0.59) Fq,M = {y ∈ [W 2,1
q (Q) ∩ L∞(Q)]n : y ≥ 0, ‖y‖L∞(Q) ≤M}.
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The main results concerning the stability for nonlinear parabolic systems are the following

two theorems:

Theorem 5.1. (Lq stability estimates) Let 2 ≤ q <∞. Let δ̃ > 0,M > 0, a compact

set G̃ ⊂ Lq
′
(Q), 0 6∈ G̃ and assume that the sources in (0.55) belong to Gq,δ̃,G̃ and the

associated solutions satisfy y ∈ Fq,M . Assume also that one of the following conditions,

(A) or (B), concerning nonlinearity f , holds:

(A) f satisfies the hypothesis (H1) in the whole cone y ≥ 0 and (H2),

or

(B) q > N+2
2

and f satisfies hypotheses (H1), (H2).

Then an Lq stability estimate holds: there exists C = C(q, δ̃,M, G̃) > 0 such that

(0.60) ‖g‖Lq(Q) ≤ C‖y‖Lq(Qω).

Theorem 5.2. (L∞ stability estimates) Let % ∈ (0, 1), q = N+1
1−% and θ ∈ (0, T ) an

intermediate observation instant of time. Consider δ̃ > 0, M > 0 and a compact set

G̃ ⊂ Lq
′
(Q), 0 6∈ G̃ such that the sources in (0.55) belong to Gq,c̃,δ̃,G̃ ∩ C%(Q) and the

associated solutions y ∈ Fq,M . Assume also that one of the conditions (A) or (B) holds.

Then there exists C = C(%, c̃, δ̃,M, G̃) > 0 such that an L∞ source estimate holds:

(0.61) ‖g‖L∞(Q) ≤ C(‖y‖Lq(Qω) + ‖y(θ, ·)‖C2+%(Ω)).

The approach for obtaining source estimates for nonlinear systems is combining a

priori estimates for the solution with source estimates for associated linear systems which

in a certain sense approximate the nonlinear model. The results in the linear case give

informations on the source in the nonlinear problem under apriori L∞ bounds of the

solutions.

Consequently, for the beginning we consider a generic linear parabolic problem, with

the same principal part as the nonlinear system, with one of the homogeneous boundary

conditions (Dirichlet, Neumann or Robin) on each component of the vector solution

(0.55),

(0.62)

{
Dtyi + Liyi + L1

i yi + L0
i y = gi, (0, T )× Ω,

βi(x) ∂yi
∂nAi

+ ηi(x)yi = 0, (0, T )× ∂Ω,
i = 1, n

where gi ≥ 0, i = 1, n are the internal sources and βi, ηi are given as before in (0.56).

The lower-order operators are given by (w is a scalar function, y is vector valued

function):

(0.63) L1
iw =

∑
k=1,N

bkiDkw, L0
i y =

∑
l=1,n

cliyl, i = 1, n,

with coefficients bki , c
l
i ∈ W 1,∞(0, T ;L∞(Ω)), and the coupling is done only through the

zero-order terms cli ≤ 0, i 6= l, i, l ∈ 1, n.
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We are interested in obtaining Lq and L∞ estimates for the source g = (gi)i=1,n ∈ Gq,δ̃,G̃
in terms of the solution y measured in Qω. The result in the linear case is the following:

Theorem 5.3. Let 2 ≤ q < ∞, δ̃ > 0, c̃ > 0 and a compact set G̃ ⊂ Lq
′
(Q), 0 6∈ G̃.

Then, for sources g in Gq,δ̃,G̃ and corresponding solutions y ≥ 0 to (0.62) belonging to

[W 2,1
q (Q)]n, there exists C = C(q, δ̃, G̃) > 0, such that

(0.64) ‖g‖Lq(Q) ≤ C‖y‖Lq(Qω).

Moreover, for fixed θ ∈ (0, T ), given % ∈ (0, 1), choosing q =
N + 1

1− %
and considering

sources g in Gq,δ̃,c̃,G̃ ∩ C%(Q) with corresponding solutions y ≥ 0 to (0.62) belonging to

[W 2,1
q (Q)]n, there exists C = C(%, δ̃, c̃, G̃) > 0, such that

(0.65) ‖g‖L∞(Q) ≤ C(‖y‖Lq(Qω) + ‖y(θ, ·)‖C2+%(Ω)).

The proof of the above theorem relies on Lq Carleman estimates for the parabolic

systems under homogeneous boundary conditions (Dirichlet, Neumann or Robin) and an

argument based on the Maximum Principle for systems of parabolic equations.

Consider now weakly coupled linear systems of form (0.62) where the boundary op-

erator is given by

By = (Biyi)i=1,n,Biyi = βi(x)
∂yi
∂nAi

+ ηi(x)yi, i = 1, n.

Under the assumed hypothesis that the off-diagonal terms of the matrix L0 are non-

positive,

(0.66) cli ≤ 0, i 6= l, i, l ∈ 1, n,

the results from [87], [3] give that if yi(0, ·) ≥ 0 in Ω then we have yi ≥ 0 in the whole

domain (0, T )×Ω. Moreover, if the solution is zero at an interior point (t0, x0) ∈ (0, T )×Ω

then y ≡ 0 for all t < t0.

The main result concerning the Lq Carleman estimates for systems of linear parabolic

equations (0.62), that we prove in §?? uses some auxiliary functions. Consider an open

subset ω ⊂⊂ Ω and a function ψ ∈ C2(Ω) such that

1

3
≤ ψ ≤ 4

3
, ψ|∂Ω =

1

3
, {x ∈ Ω : |∇ψ(x)| = 0} ⊂⊂ ω.

One also considers the weight functions

(0.67) ϕ(t, x) :=
eλψ(x)

t(T − t)
, α(t, x) :=

eλψ(x) − e1.5λ‖ψ‖C(Ω)

t(T − t)
.

The result concerning the Lq Carleman estimates for systems of linear parabolic equations

(0.62) is the following

Proposition 5.1. (Lq-Carleman estimate) Let g ∈ (Lq(Q))n, with 2 ≤ q < ∞.

Then there exist s0 = s0(q), λ0 = λ0(q), such that if λ > λ0, s′, s > s0, s′

s
> Γ > 1,

then there exists C = C(q,Γ) such that the solutions y ∈ W 2,1
q (Q) to (0.62), satisfy the
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estimate:

(0.68)
‖yes′α‖Lq(Q) + ‖(Dy)es

′α‖Lq(Q) + ‖(D2y)es
′α‖Lq(Q) + ‖(Dty)es

′α‖Lq(Q)

≤ C
[
‖gesα‖Lq(Q) + ‖yesα‖L2(Qω)

]
.

Part 4. Regularity and Carleman estimates in Lq(Lp) spaces for parabolic

problems

Chapter 6: On the parabolic regularity, Sobolev embeddings and global Carleman esti-

mates in Lq(Lp) spaces. We present some parabolic regularity results that may be derived

from existing theory in the cited literature. We chose to present it in a more concen-

trated appearance, which is useful for studying regularity in nonlinear parabolic problems,

through bootstrap arguments, when the nonlinearity depends on the state itself y and

its first order derivatives, Dy. The parabolic regularity results are then used to present

a clear proof to classical embeddings for anisotropic Sobolev spaces and we also use this

approach to Sobolev embeddings of W 2,1
p,q (Q) spaces. We discuss Gagliardo-Nirenberg

type inequalities for anisotropic Sobolev spaces. We also apply our regularity arguments

to establish global Carleman parabolic estimates in Lq(Lp), q, p > 2 spaces, for nonho-

mogeneous parabolic equations.

Let Ω ⊂ Rn, n ≥ 2, be a bounded domain with smooth boundary ∂Ω and denote by

Q = (0, T )× Ω. We consider parabolic problems of the form

(0.69)


Dty(t, x) + Ly(t, x) = f(t, x) t ∈ (0, T ), x ∈ Ω,

y(t, x) = 0 t ∈ (0, T ), x ∈ ∂Ω,

y(0, x) = y0(x) x ∈ Ω,

where L is an uniformly elliptic operator of the form

(0.70) Ly = −
n∑

j,k=1

Dj(ajkDky) +
n∑
k=1

bkDky + cy.

The coefficients satisfy the regularity assumptions ajk ∈ W 1,∞(Ω), bk, c ∈ L∞(Ω) and

those in principal part satisfy for some µ > 0 the ellipticity condition

(0.71)
n∑

j,k=1

ajk(x)ξjξk ≥ µ|ξ|2, ∀ξ ∈ Rn, x ∈ Ω.

For p, q ∈ [1,∞) consider the spaces (see [102, 103]):

W 2,1
p,q (Q) = Lq(W 2,p(Ω)) ∩W 1,q(Lp(Ω)).

One of the main results in the chapter is about Sobolev type embeddings for W 2,1
p,q (Q),

and the approach will rely on the regularity of flows generated by analytic semigroups.

The Lp realization for some p ∈ (1,∞), with homogeneous Dirichlet boundary conditions

for L takes into account the Lp regularity theory for elliptic equations (see [58]) and is

defined as A = Ap : D(A) = W 2,p(Ω) ∩W 1,p
0 (Ω) with Au = Lu, u ∈ D(A).

Without loss of generality concerning regularity we may suppose that L is positive.

Moreover, one knows that −A generates an analytic semigroup in Lp. Maximum principle
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applied to elliptic operator L shows that (λI + A)−1 is positivity preserving and by

Theorem 6.4 we find that A = Ap has bounded imaginary powers. We have thus:

Theorem 6.5. The operator A = Ap with p ∈ (1,∞), which is the Lp realization of

elliptic operator L with homogeneous boundary conditions on ∂Ω, has the property that,

for γ ∈ (0, 1),

D(Aγ) = [Lp(Ω),W 2,p(Ω) ∩W 1,p
0 (Ω)]γ.

( [X, Y ]γ denotes the complex interpolation space between Banach spaces X and Y .)

Relation between domains of fractional powers of operator A and Sobolev-Slobodeckii

spaces is recalled in the next proposition:

Proposition 6.1. Consider γ ∈ (0, 1). Then, if p ≥ 2, one has the continuous

embeddings

D(Aγ) ⊂ H2γ,p(Ω) ⊂ W 2γ,p(Ω).

If 1 < p < 2 and γ′ < γ,

D(Aγ) ⊂ H2γ,p(Ω) ⊂ W 2γ′,p(Ω).

with continuous embeddings.

Consider X = Lp(Ω) and the parabolic problem with homogeneous initial data:

(0.72) y′ + Ay = f, y(0) = 0, t ∈ (0, T )

with A the Lp realization of parabolic operator L with Dirichlet boundary conditions. It

turns out that D(A) = W 2,p ∩W 1,p
0 (Ω). The mild solution is given by

(0.73) y(t) =

∫ t

0

e−(t−s)Af(s)ds.

Our purpose is to obtain regularity in Lr(D(Aγ)) and, subsequently, relating D(Aγ) to

Bessel potential and Sobolev-Slobodeckii spaces, in Lr(Hs,p(Ω)) and Lr(W s,p(Ω)), for

some s > 0, r > 1.

Proposition 6.2. Consider q, p ∈ (1,∞) and f ∈ Lq(Lp(Ω)). For r ∈ (q,∞] and

θ = 2 + 2
r
− 2

q
, the mild solution y to (0.72), given by (0.73), satisfies the regularity

estimate:

(0.74) ‖y‖Lr(Hθ,p(Ω))) ≤ C‖f‖Lq(Lp(Ω)),

with a constant C = C(p, q, r).

Moreover, for r1 ∈ (q,∞) if q ≥ 2 and r1 ∈
(
q, 2q

2−q

]
if q ∈ (1, 2), and choosing

θ̃ = 1 + 2
r1
− 2

q
, the gradient of the mild solution y satisfies the regularity estimate:

(0.75) ‖Dy‖Lr1 (H θ̃,p(Ω)) ≤ C̃‖f‖Lq(Lp(Ω)).

with a constant C̃ = C̃(p, q, r1).

Corollary 6.1. With r ∈ (q,∞) and θ = 2 + 2
r
− 2

q
we have the estimates:
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• For θp ≤ n, choosing p̃ ≤ np
n−θp if θp < n and choosing arbitrarily p̃ ∈ [p,∞) if

θp = n, one has

‖y‖Lr(Lp̃(Ω))) ≤ C(p, q, r, p̃)‖f‖Lq(Lp(Ω));

• If θp > n, then y ∈ Lr(Ck+α(Ω)) with α ∈ (0, 1], k ∈ {0, 1}, k + α = θ − n
p

and

‖y‖Lr(Ck+α(Ω)) ≤ C(p, q, r, p̃)‖f‖Lq(Lp(Ω)).

Moreover, for r1 ∈ (q,∞) if q ≥ 2 and r1 ∈ (q, 2q
2−q ] if q ∈ (1, 2), denoting by θ̃ = 1+ 2

r1
− 2

q

we have the following estimates for the gradient of the solution:

• For θ̃p ≤ n, choosing p̃1 ≤ np

n−θ̃p if θ̃p < n and choosing arbitrarily p̃1 ∈ [p,∞) if

θ̃p = n, one has

‖Dy‖Lr1 (Lp̃1 (Ω))) ≤ C(p, q, r1, p̃1)‖f‖Lq(Lp(Ω));

• If θ̃p > n, then y ∈ Lr1(Cα1(Ω)) with α1 ∈ (0, 1), α1 = θ̃ − n
p

and

‖Dy‖Lr1 (Cα1 (Ω))) ≤ C(p, q, r1, p̃)‖f‖Lq(Lp(Ω)).

Concerning Sobolev embeddings for W 2,1
p,q (Q) spaces we obtain the following result:

Theorem 6.8. Consider u ∈ W 2,1
p,q (Q), p, q ∈ (1,∞).

Then u ∈ Z1 where

Z1 =


Lr(Lp̃(Ω)), r ∈ [q,∞], p̃ ≤ np

n−(2+ 2
r
− 2
q

)p
, if (2 + 2

r
− 2

q
)p < n,

Lr(Lp̃(Ω)), r ∈ [q,∞], p̃ ∈ [p,∞), if (2 + 2
r
− 2

q
)p = n,

Lr(Ck+α(Ω)), α ∈ (0, 1], k ∈ {0, 1}, k + α = 2 + 2
r
− 2

q
− n

p
,

if (2 + 2
r
− 2

q
)p > n

and there exists C = C(p, q, r, p̃), respectively C = C(p, q, r) in the third case, such that

‖u‖Z1 ≤ C‖u‖W 2,1
p,q (Q).

Moreover, Du ∈ Z2 where

Z2 =


Lr1(Lp̃1(Ω)), r1 ∈ [q,∞], p̃1 ≤ np

n−(1+ 2
r1
− 2
q

)p
, if (1 + 2

r1
− 2

q
)p < n,

Lr1(Lp̃1(Ω)), r1 ∈ [q,∞], p̃1 ∈ [p,∞), if (1 + 2
r1
− 2

q
)p = n,

Lr1(Cα(Ω)), α ∈ (0, 1], α = 1 + 2
r1
− 2

q
− n

p
if (1 + 2

r1
− 2

q
)p > n

and there exists C = C(p, q, r1, p̃1), respectively C = C(p, q, r1) in the third case, such

that

‖Du‖Z2 ≤ C‖u‖W 2,1
p,q (Q).

Theorem 6.9. For p, q ∈ (1,∞), suppose there exists γ ∈ (0, q−1
q

) with 2γ − n
p
> 0

not an integer. Then the space W 2,1
p,q (Q) is continuously embedded in C

q−1
q
−γ(Ck+α(Ω)),

where k ∈ {0, 1}, α ∈ (0, 1), k + α = 2γ − n
p
.

One may easily use Theorem ?? to obtain interpolation inequalities of Gagliardo type

between spaces W 2,1
p,q (Q) and Lσ(Lτ (Ω)), with p, q, σ, τ ∈ (1,∞). If W 2,1

p,q (Q) ⊂ Lr(Lp̃)(Ω)

with continuous injections and u ∈ W 2,1
p,q (Q)∩Lσ(Lτ (Ω)), then u ∈ [Lr(Lp̃(Ω)), Lσ(Lτ (Ω))]θ,
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θ ∈ (0, 1) and satisfies the inequality

‖u‖Lσθ (Lτθ (Ω)) ≤ C(θ, p, q, σ, τ)‖u‖1−θ
W 2,1
p,q (Q)

‖u‖θLσ(Lτ (Ω)),

where 1
σθ

= θ
σ

+ 1−θ
r

and 1
τθ

= θ
τ

+ 1−θ
p̃

.

Let ω ⊂⊂ Ω. One needs (and existence is guaranteed, see [57]) an auxiliary function

ψ with the following properties:

ψ0 ∈ C2(Ω), 0 < ψ0 in Ω, ψ0|∂Ω = 0, {x ∈ Ω : |∇ψ0(x)| = 0} ⊂⊂ ω.

Denote by

(0.76) ψ := ψ0 +K,

for a positive constant K > 0 which is fixed such that supψ
inf ψ

< δ small enough (see [55]).

Introduce also, for parameters s, λ > 0 the auxiliary functions:

(0.77) ϕ(t, x) :=
eλψ(x)

t(T − t)
, α(t, x) :=

eλψ(x) − e1.5λ‖ψ‖C(Ω)

t(T − t)
.

Theorem 6.10. Let f ∈ Lq(Lp(Ω)), p, q ∈ [2,∞) and k0 ∈ R. Then there exist

m = m(q, p) ∈ N, λ0 = λ0(p, q, k0), s0 = s0(p, q, k0) and C = C(p, q, k0) > 0 such that,

for any λ ≥ λ0, s ≥ s0, the following inequality holds:

(0.78)

‖ϕk0−2myesα‖Lq(Lp(Ω)) + s−1λ−1‖ϕk0−2m−1Dyesα‖Lq(Lp(Ω))

≤C[s2mλ2m‖ϕk0+1yesα‖L2(Qω) + s2m− 3
2λ2m−2‖ϕk0− 1

2fesα‖Lq(Lp(Ω))]

≤C[s2mλ2m‖ϕk0+1yesα‖Lq(Lp(ω)) + s2m− 3
2λ2m−2‖ϕk0− 1

2fesα‖Lq(Lp(Ω))].

Appendices. The thesis concludes with a set of appendices addressing mathematical

framework, fundamental results and techniques on which the the thesis is developed.

These appendices are as follows:

In Appendix A we recall definitions and embedding theorems concerning isotropic

and anisotropic Sobolev spaces.

The Appendix B deals with fundamental results from C0-semigroups theory, describ-

ing the abstract framework for the study of evolution partial differential equations and,

in particular, the parabolic problems in which we are interested.

Appendix C is devoted to maximum principles for parabolic equations and systems; in

the latter situation maximum principles are related to invariance properties for parabolic

flows. This part comes as a support for the inverse problems we have presented.

Appendix D presents some fixed point theorems which are usually used in exitence

for nonlinear problems (existence to Cauchy problems for semilinear equations, exitence

of controls in controllability of nonlinear equations, etc.).

In Appendix E we present results concerning controllability, observability and Carle-

man estimates.

Appendix F is dedicated to inverse source problems, more precisely the result from

[61], the starting point for our research in this direction.
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[36] Mourad Choulli. Une introduction aux problèmes inverses elliptiques et paraboliques, volume 65 of
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