The singular perturbations for the abstract semi-linear evolution equations in Hilbert spaces

Andrei Perjan

Moldova State University, Chishinău, Republic of Moldova andrei.perjan@usm.md

The joint work with Galina Rusu

Let H and V are two real Hilbert spaces, such that V is continuously embedded in H. In the space H we consider the following Cauchy problem:

$$\begin{cases} \varepsilon u_{\varepsilon}''(t) + u_{\varepsilon}'(t) + Au_{\varepsilon}(t) + B(u_{\varepsilon}(t)) = f_{\varepsilon}(t), \quad t \in (0,T), \\ u_{\varepsilon}(0) = u_{0\varepsilon}, \quad u_{\varepsilon}'(0) = u_{1\varepsilon}, \end{cases}$$
(P_{\varepsilon})

where $A: V \subset H \to H$ is a linear self-adjoint operator and B is nonlinear $A^{1/2}$ lipschitzian or monotone operator, $u_{0\varepsilon}, u_{1\varepsilon} \in H, f_{\varepsilon} : [0,T] \to H$ and ε is a small parameter. We will study the behaviour of solutions to the problem (P_{ε}) , as $\varepsilon \to 0$, relative to the correspondig solutions to the unperturbed problem (P_0) :

$$\begin{cases} v'(t) + Av(t) + B(v(t)) = f(t), & t \in (0,T), \\ v(0) = u_0. \end{cases}$$
(P₀).

If $||u_{0\varepsilon} - u_0||_V \to 0$, $||u_{1\varepsilon} - u_1||_H \to 0$, $||f_{\varepsilon} - f||_{W^{1,2}(0,T;H)} \to 0$, using the relationship between solutions of the systems (P_{ε}) and (P_0) and a priori estimates of solutions to the system (P_{ε}) we prove that

$$u_{\varepsilon} \to v$$
 in $C([0,T];H) \cap L^{\infty}(0,T;V)$, as $\varepsilon \to 0$.

This means that the perturbations of the system (P_0) by the system (P_{ε}) are regular in the indicated norms. In the same time, we show that

$$u'_{\varepsilon} - v' - \alpha_{\varepsilon} e^{-t/\varepsilon} \to 0 \quad \text{in} \quad C([0,T];H) \cap L^{\infty}(0,T;V) \quad \text{as} \quad \varepsilon \to 0,$$
 (1)

where $\alpha_{\varepsilon} = f_{\varepsilon}(0) - u_{1\varepsilon} - Au_{0\varepsilon} - B(u_{0\varepsilon})$. It means that the derivatives of solutions to the problem (P_{ε}) do not converge to derivatives of the corresponding solutions of problem (P_0) , when $\varepsilon \to 0$. The relation (1) shows that the derivative u' has a singular behaviour relative to $\varepsilon \to 0$ in the neighborhood of t = 0. This singular behaviour is determined by the function $\alpha_{\varepsilon} e^{-t/\varepsilon}$, which is the boundary layer function and the neighborhood of t = 0 is the boundary layer for u'.

The mathematical model (P_{ε}) governs various physical processes, which are described by the Klein-Gordon equation, the Sine-Gordon equation, the plate equation, the Cahn-Hilliard equation and others equations. Therefore, we apply these results to the indicated equations.

We also study the behavior of solutions to the following system:

$$\begin{cases} \varepsilon u_{\varepsilon\delta}''(t) + \delta u_{\varepsilon\delta}'(t) + Au_{\varepsilon\delta}(t) + B(u_{\varepsilon\delta}(t)) = f_{\varepsilon}(t), & t \in (0,T), \\ u_{\varepsilon\delta}(0) = u_{0\varepsilon}, & u_{\varepsilon\delta}'(0) = u_{1\varepsilon}, \end{cases}$$
(P_{\varepsilon\beta)}

when $\varepsilon \to 0$ and $\delta \to 0$ simultaneously.