# The singular perturbations for the abstract semi-linear evolution equations in Hilbert spaces 

Andrei Perjan<br>Moldova State University, Chishinău, Republic of Moldova<br>andrei.perjan@usm.md

The joint work with Galina Rusu

Let $H$ and $V$ are two real Hilbert spaces, such that $V$ is continuously embedded in $H$. In the space $H$ we consider the following Cauchy problem:

$$
\left\{\begin{array}{l}
\varepsilon u_{\varepsilon}^{\prime \prime}(t)+u_{\varepsilon}^{\prime}(t)+A u_{\varepsilon}(t)+B\left(u_{\varepsilon}(t)\right)=f_{\varepsilon}(t), \quad t \in(0, T), \\
u_{\varepsilon}(0)=u_{0 \varepsilon}, \quad u_{\varepsilon}^{\prime}(0)=u_{1 \varepsilon},
\end{array}\right.
$$

where $A: V \subset H \rightarrow H$ is a linear self-adjoint operator and $B$ is nonlinear $A^{1 / 2}$ lipschitzian or monotone operator, $u_{0 \varepsilon}, u_{1 \varepsilon} \in H, f_{\varepsilon}:[0, T] \rightarrow H$ and $\varepsilon$ is a small parameter. We will study the behaviour of solutions to the problem $\left(P_{\varepsilon}\right)$, as $\varepsilon \rightarrow 0$, relativ to the correspondig solutions to the unperturbed problem $\left(P_{0}\right)$ :

$$
\left\{\begin{array}{l}
v^{\prime}(t)+A v(t)+B(v(t))=f(t), \quad t \in(0, T),  \tag{0}\\
v(0)=u_{0}
\end{array}\right.
$$

If $\left\|u_{0 \varepsilon}-u_{0}\right\|_{V} \rightarrow 0,\left\|u_{1 \varepsilon}-u_{1}\right\|_{H} \rightarrow 0,\left\|f_{\varepsilon}-f\right\|_{W^{1,2}(0, T ; H)} \rightarrow 0$, using the relationship between solutions of the systems $\left(P_{\varepsilon}\right)$ and $\left(P_{0}\right)$ and a priori estimates of solutions to the system $\left(P_{\varepsilon}\right)$ we prove that

$$
u_{\varepsilon} \rightarrow v \quad \text { in } \quad C([0, T] ; H) \cap L^{\infty}(0, T ; V), \quad \text { as } \quad \varepsilon \rightarrow 0 .
$$

This means that the perturbations of the system $\left(P_{0}\right)$ by the system $\left(P_{\varepsilon}\right)$ are regular in the indicated norms. In the same time, we show that

$$
\begin{equation*}
u_{\varepsilon}^{\prime}-v^{\prime}-\alpha_{\varepsilon} e^{-t / \varepsilon} \rightarrow 0 \quad \text { in } \quad C([0, T] ; H) \cap L^{\infty}(0, T ; V) \quad \text { as } \quad \varepsilon \rightarrow 0, \tag{1}
\end{equation*}
$$

where $\alpha_{\varepsilon}=f_{\varepsilon}(0)-u_{1 \varepsilon}-A u_{0 \varepsilon}-B\left(u_{0 \varepsilon}\right)$. It means that the derivatives of solutions to the problem $\left(P_{\varepsilon}\right)$ do not converge to derivatives of the corresponding solutions of problem $\left(P_{0}\right)$, when $\varepsilon \rightarrow 0$. The relation (1) shows that the derivative $u^{\prime}$ has a singular behaviour relative to $\varepsilon \rightarrow 0$ in the neighborhood of $t=0$. This singular behaviour is determined by the function $\alpha_{\varepsilon} e^{-t / \varepsilon}$, which is the boundary layer function and the neighborhood of $t=0$ is the boundary layer for $u^{\prime}$.

The mathematical model $\left(P_{\varepsilon}\right)$ governs various physical processes, which are described by the Klein-Gordon equation, the Sine-Gordon equation, the plate equation, the Cahn-Hilliard equation and others equations. Therefore, we apply these results to the indicated equations.

We also study the behavior of solutions to the following system:

$$
\left\{\begin{array}{l}
\varepsilon u_{\varepsilon \delta}^{\prime \prime}(t)+\delta u_{\varepsilon \delta}^{\prime}(t)+A u_{\varepsilon \delta}(t)+B\left(u_{\varepsilon \delta}(t)\right)=f_{\varepsilon}(t), \quad t \in(0, T), \\
u_{\varepsilon \delta}(0)=u_{0 \varepsilon}, \quad u_{\varepsilon \delta}^{\prime}(0)=u_{1 \varepsilon},
\end{array}\right.
$$

when $\varepsilon \rightarrow 0$ and $\delta \rightarrow 0$ simultaneously.

